Anisotropic Microparticles from Microfluidics

نویسندگان

چکیده

Anisotropic microparticles, which assume different properties depending on their direction, have become a research hotspot because subtle changes in particle anisotropy can create surprising effects. Benefiting from anisotropic nature, these microparticles are capable of breaking through the limitation general isotropic particles and combining diverse functions within single entity, thereby adding significant value an extremely wide range areas including display, sensing, drug delivery, cell culture. The emerging microfluidic technique offers powerful platform for controllable synthesis with excellent mono-dispersity intricate morphology, facilitating development various areas. In this review, basic principle is briefly introduced, followed by emphasis fabrication application microfluidics. addition, perspectives future challenges associated microfluidics presented terms applications. attracted extensive scientific interest recent years due to special complex components, ability incorporate entity. its property precise flow control fluids has opened intriguing avenues fabricating uniformity. Herein, overall review presented, covering variety topics ranging approaches First, formation templates generation system introduced. Then, emphasized. Following two opening sections, concerns focused applications fields, culture, so on. Last but not least, conclusion current status presented. come forefront last decades effects.1Lin X.K. Wu Z.G. Y. Xuan M.J. He Q. Self-propelled micro-/nanomotors based controlled assembled architectures.Adv. Mater. 2016; 28: 1060-1072Crossref PubMed Scopus (126) Google Scholar, 2Bong K.W. Bong K.T. Pregibon D.C. Doyle P.S. Hydrodynamic focusing lithography.Angew. Chem. Int. Ed. Engl. 2010; 49: 87-90Crossref (60) 3Bhaskar S. Hitt J. Chang S.W. Lahann Multicompartmental microcylinders.Angew. 2009; 48: 4589-4593Crossref (96) 4Zhu X.J. Vo C. Taylor M. Smith B.R. Non-spherical micro- nanoparticles nanomedicine.Mater. Horiz. 2019; 6: 1094-1121Crossref 5Kaewsaneha Tangboriboonrat P. Polpanich D. Eissa Elaissari A. Janus colloidal particles: preparation, properties, biomedical applications.ACS Appl. Interfaces. 2013; 5: 1857-1869Crossref (146) Scholar To date, plethora morphology ingredient into our view.6Chung S.E. Park W. Shin Lee S.A. Kwon Guided fluidic self-assembly microstructures using railed channels.Nat. 2008; 7: 581-587Crossref (242) 7Hou Li M.Z. Song Y.L. Patterned photonic crystals.Angew. 2018; 57: 2544-2553Crossref (0) 8Hwang D.K. Oakey Toner Arthur J.A. Anseth K.S. S.Y. Zeiger Van Vliet K.J.V. Stop-flow lithography production shape-evolving degradable microgel particles.J. Am. Soc. 131: 4499-4504Crossref (97) 9Du J.Z. O’Reilly R.K. patchy, multicompartment architectures: preparation application.Chem. Rev. 2011; 40: 2402-2416Crossref 10Xu T.L. Gao Xu L.P. Zhang Wang S.T. Fuel-free synthetic micro-/nanomachines.Adv. 2017; 29: 1603250Crossref (148) For instance, were first reported 1992,11de Gennes P.G. Soft matter (Nobel lecture).Angew. 1992; 31: 842-845Crossref possess asymmetric biphasic geometry compositions, multiphasic construction core domain.12Zhang Grzybowski B.A. Granick synthesis, assembly, application.Langmuir. 33: 6964-6977Crossref 13Walther Müller A.H.E. self-assembly, physical applications.Chem. 113: 5194-5261Crossref (1162) 14Su H.Y. Hurd Price C.A. Jing L.Y. Tian Liu Qian K. design, applications.Mater. Today BIO. 4: 100033Crossref (8) Furthermore, copious, complex-shaped been proposed, stomatocyte, rod-shaped particles, disk-shaped biconcave, on.15Wilson D.A. Nolte R.J.M. van Hest J.C.M. Autonomous movement platinum-loaded stomatocytes.Nat. 2012; 268-274Crossref (364) 16Haghgooie R. Squishy non-spherical hydrogel microparticles.Macromol. Rapid Commun. 128-134PubMed 17Lee D.J. Beesabathuni S.N. Shen A.Q. Shape-tunable wax microparticle via droplet impact.Biomicrofluidics. 2015; 9: 064114Crossref (5) 18Prileszky T.A. Furst E.M. Fluid networks endoskeletal droplets.Chem. 3734-3740Crossref (13) Due morphologies suggestive unpredicted untapped potential host on.19Zhang Y.S. Choi Xia Y.N. Inverse opal scaffolds regenerative medicine.Soft Matter. 9747Crossref (39) 20Sun X.T. Z.R. Microfluidic multifunctional analytical applications.Talanta. 2014; 121: 163-177Crossref (33) 21Hausmann M.K. Hauser Siqueira G. Libanori Vehusheia S.L. Schuerle Zimmermann T.J. Studart A.R. Cellulose-based magnetically optical modulation sensing.Small. 2020; 16: e1904251Crossref 22Liu D.F. H.B. Fontana F. Hirvonen J.T. Santos H.A. Microfluidic-assisted carriers delivery.Lab Chip. 17: 1856-1883Crossref 23Brzezi?ski Socka Kost B. Microfluidics producing polylactide delivery application.Polym. 68: 997-1014Crossref 24Jo Y.K. Biopolymer prepared applications.Small. e1903736Crossref example, light composite materials that exhibit particular mechanical designed making use reinforcing capacity fiber platelets.25Xu Z. Strong, conductive, lightweight, neat graphene aerogel fibers aligned pores.ACS Nano. 7103-7113Crossref (444) transportation oriented release could be realized taking advantage crescent structures.26Liu Zhao Mytnyk Klemm B.J.M. Y.M. Yan D.D. Mendes E. Esch J.H. Self-orienting micro-buckets as novel carriers.Angew. 58: 547-551Crossref (11) Given such rich scientists efforts particles. Consequently, considerable number approaches, include seed emulsion polymerization, template molding, sphere stretching spherical devised particles.27Kim S.H. Jeon S.J. Yi G.R. Heo C.J. Yang S.M. Optofluidic assembly crystals sizes, shapes, structures.Adv. 20: 1649-1655Crossref (117) 28Sung K.E. Vanapalli Mukhija McKay Millunchick J.M. Burns M.A. Solomon Programmable configurable anisotropy.J. 130: 1335-1340Crossref (58) 29Liu Y.Y. gradient device simultaneously preparing four distinct types microparticles.RSC Adv. 17623-17630Crossref 30Nisisako T. Recent advances droplets particles.Curr. Opin. Colloid Interface Sci. 25: 1-12Crossref (78) 31Lee Fabrication magneto-responsive, anisotropic, hybrid variable size shape.Angew. 52: 8160-8164Crossref (14) 32Pawar A.B. Kretzschmar I. Fabrication, patchy particles.Macromol. 150-168Crossref 33Choi C.H. H. Abbaspourrad Kim Fan Caggioni Wesner Zhu T.T. Weitz Triple drops ultrathin water layer: high encapsulation efficiency enhanced cargo retention microcapsules.Adv. 3340-3344Crossref However, most available methods continue face respect accurate volume absence independent sizes cannot meet requirement practical interdisciplinary facilitate systematic manipulation microscale microchannels, thus generation.34Dendukuri polymeric microfluidics.Adv. 21: 4071-4086Crossref (253) 35Kim T.Y. T.M. Shim T.S. Droplet functional microparticles.Langmuir. 30: 1473-1488Crossref (134) 36Tian L.Q. Complex three-dimensional lithography.Electrophoresis. 41: 1491-1502Crossref (2) 37Shum H.C. Abate B.G. Chen Thiele J.L. Shah Krummel 108-118Crossref (186) devices, also described chips, usually integrate channels units specific requirement, providing where multiple phases able coexist interact well, creating endless steerability fluids.38Bhattacharjee N. Urrios Kang Folch upcoming 3D-printing revolution microfluidics.Lab 1720-1742Crossref 39Stone Stroock A.D. Ajdari Engineering flows small devices.Annu. Mech. 2004; 36: 381-411Crossref 40Yeo Chan P.P.Y. Friend J.R. devices bioapplications.Small. 12-48Crossref (339) shrunk behave inimitably, presenting major viscous effects, efficient mass-heat transfer, surface effects.41Zarzar L.D. Sresht V. Sletten Kalow Blankschtein Swager Dynamically reconfigurable emulsions tunable interfacial tensions.Nature. 518: 520-524Crossref (197) 42Mark Haeberle Roth von Stetten Zengerle lab-on-a-chip platforms: requirements, characteristics 39: 1153-1182Crossref 43Whitesides G.M. origins microfluidics.Nature. 2006; 442: 368-373Crossref (5671) specific, laminar resulting low Reynolds derived dynamic main behaviors microchannel.44Squires Quake S.R. Microfluidics: fluid physics at nanoliter scale.Rev. Mod. Phys. 2005; 77: 977-1026Crossref (2979) 45Teh Lin Hung L.H. A.P. 8: 198-220Crossref (1973) 46Song D.L. Ismagilov R.F. Reactions channels.Angew. 45: 7336-7356Crossref (1501) These unique microchannels responsible differences observed between traditional macro-scale techniques enable realization micromachining micromanipulation difficult accomplish conventional methods.47Lv Wei E.Q. Qin L. Yu Photocontrol slugs liquid crystal polymer microactuators.Nature. 537: 179-184Crossref (416) 48Li Mittal Mak Shum Perturbation-induced manipulating structure configuration microfluidics.J. Micromech. Microeng. 084009Crossref (12) 49Farahani R.D. Dubé Therriault Three-dimensional printing nanocomposites: manufacturing applications.Adv. 5794-5821Crossref (232) elaborately designing microchannel or integrating some sensing other operating elements chip, sophisticated systems constructed realize functions.50Shang L.R. Cheng Y.J. Emerging microfluidics.Chem. 117: 7964-8040Crossref (394) 51Theberge Courtois Schaerli Fischlechner Abell Hollfelder Huck W.T.S. Microdroplets microfluidics: evolving discoveries chemistry biology.Angew. 5846-5868Crossref (735) 52Au A.K. Huynh Horowitz L.F. 3D-printed microfluidics.Angew. 55: 3862-3881Crossref context, brought infinite multidisciplinary field, biology, physics, chemistry, engineering.53Roh Y.H. H.J. encoded multiplex immunoassay.BioChip 13: 64-81Crossref 54Wang B.L. Ghaderi Zhou Agresti Fink Stephanopoulos high-throughput culturing cells selection extracellular metabolite consumption.Nat. Biotechnol. 32: 473-478Crossref (205) 55Guo M.T. Rotem Heyman biological assays.Lab 12: 2146-2155Crossref (630) 56Rossow Ehrlicher A.J. Langhoff Haag Seiffert Controlled cell-laden microgels radical-free gelation 134: 4983-4989Crossref particular, ideal only enables generates diversified material options channel designs.57Seiffert polymer-analogous microfluidics.Soft 3184-3190Crossref (59) 58Duncanson W.J. advanced release.Lab 2135-2145Crossref (145) 59Choi Seo K.D. D.W. B.C. D.S. engineering nascent utilization diagnostic applications.Lab 591-613Crossref microfluidics, there several reviews certain aspects techniques36Tian 38Bhattacharjee microparticles.20Sun Scholar,60Li Ge X.H. B.Y. W.X. Qu L.L. A.F. 47: 5646-5683Crossref Scholar,61Chao Y.C. aqueous two-phase systems: fundamentals interfaces 114-142Crossref cover mechanism fields remains lacking, we believe comprehensive substantive all will profound impact active field. paper, progress fabricated fabrications introduce summarizing dynamics involving droplet. mechanisms discussed detail. Readers interested guided specified reviews.62Di Carlo Irimia Tompkins R.G. Continuous inertial focusing, ordering, separation microchannels.Proc. Natl. Acad. USA. 2007; 104: 18892-18897Crossref (1063) 63Lee C.Y. W.T. C.C. Fu L.M. Passive mixers review.Chem. Eng. 288: 146-160Crossref (123) 64Salunkhe P.B. Shembekar A effect phase change thermal performance system.Renew. Sustain. Energ. 5603-5616Crossref 65Wang X.Q. Mujumdar A.S. Heat transfer nanofluids: review.Int. Therm. 46: 1-19Crossref 66Atencia Beebe interfaces.Nature. 437: 648-655Crossref (700) 67Pamme separations devices.Lab 1644-1659Crossref 68Zhu P.A. review.Lab 34-75Crossref (283) 69Anna Droplets bubbles 285-309Crossref (90) focus method generating component copious After discussed. Applications biosensing, on, Finally, perspective produce uniform geometry, homogeneous necessary. quintessential operate microfluids shape, incredible templates. Since was devoted exploring behavior microchannels. Results show deriving microchannel. now well applied microparticles. Laminar refers emblematic Generally, states classified turbulent flow, judged number.44Squires According number, state depends velocity, density, viscosity, fluid.62Di proportional whereas it inversely viscosity. When microscale, leads takes microchannel.63Lee characterized stable no macroscopic mixing surrounding fluids.64Salunkhe Therefore, when more introduced same simultaneously, each maintain own pattern unchanged, reaction molecular diffusion occurs contact interface neighboring phases.65Wang Scholar,66Atencia Harnessing advantages, serves functions. As representative involves photo-curable ultraviolet (UV) beam mask.67Pamme mainly determined shape mask design UV beam. continuous large space Droplets, one subcategories serve prominent great steerability. Droplet-based furnish crucial monodisperse yielding differently shaped single, double, obtained dragging force, intensity higher than viscosity turn interaction shear stress tension immiscible fluid-fluid fluid-gas microchannels.50Shang controlling precisely, shapes sizes. carefully imparted tailored features. generated emulsion, double emulsions, phases. section, discuss emulsion. Single-emulsion simplest forms used results instabilities dispersed velocity under influence phase.68Zhu Normally, originate tension. process passive approaches. Most single-emulsion way, junction spontaneously generate droplets. formed deforms unstable then fragments converting droplets, categories methods. One utilizes forces pinch off includes cross-flow, co-flow, flow-focusing geometries. uses variations confinement drive formation, emulsification, step em

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics analysis of microparticles in inertial microfluidics for biomedical applications

Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...

متن کامل

Controlled synthesis of nonspherical microparticles using microfluidics.

The controlled synthesis of nonspherical microparticles using microfluidics processing is described. Polymer droplets, formed by shearing a photopolymer using a continuous water phase at a T-junction, were constrained to adopt nonspherical shapes by confining them using appropriate microchannel geometries. Plugs were obtained by shearing the polymer phase at low shear rates, while disks were ob...

متن کامل

Clogging-free microfluidics for continuous size-based separation of microparticles

In microfluidic filtration systems, one of the leading obstacles to efficient, continuous operation is clogging of the filters. Here, we introduce a lateral flow microfluidic sieving (μ-sieving) technique to overcome clogging and to allow continuous operation of filter based microfluidic separation. A low frequency mechanical oscillation was added to the fluid flow, which made possible the rele...

متن کامل

The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics

The controlled synthesis of micrometer-sized polymeric particles bearing features such as nonspherical shapes and spatially segregated chemical properties is becoming increasingly important. Such particles can enable fundamental studies on self-assembly and suspension rheology, as well as be used in applications ranging from medical diagnostics to photonic devices. Microfluidics has recently em...

متن کامل

Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation.

The high-throughput analysis and isolation of bacterial cells encapsulated in agarose microparticles using fluorescence-activated cell sorting (FACS) is described. Flow-focusing microfluidic systems were used to create monodisperse microparticles that were ∼30 μm in diameter. The dimensions of these particles made them compatible with flow cytometry and FACS, and the sensitivity of these techni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2020.09.023